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Voronoi cells in the Euclidean case

from Wikipedia:
Let X be a finite point configuration in R".

@ The Voronoi cell of x € X is the set of all points that are closer to x
than any other y € X, in the Euclidean metric.

@ The subset of points that are equidistant from x and any other points
in X is the boundary of the Voronoi cell of x.

@ Voronoi cells partition R” into convex polyhedra.

If X is a variety, each Voronoi cell is a convex semialgebraic set in the
normal space of X at a point. The algebraic boundaries of these Voronoi
cells were computed by Cifuentes, Ranestad, Sturmfels and Weinstein.
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Log-Voronoi cells for discrete models
We explore Voronoi cells in the context of algebraic statistics.
o A probability simplex is defined as

A1 ={(p1,---,pn) 1 pr+ -+ po=1,p; >0foric|n]}

.. A

0-simplex 1-simplex 2-simplex 3-simplex

e A statistical model M is a subset of a probability simplex.
e An algebraic statistical model is a subset M = V(f) N A,_1 for some
polynomial system of equations f : C" — C™.

e For an empirical data point u = (u1, ..., up) € Ap_1, the log-likelihood
function defined by u assuming distribution p = (p1, ..., pn) € M is

Lu(p) = u1log p1 + uzlog p2 + - - - + up log p, + log(c).
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Log-Voronoi cells

There are two natural problems to consider:

© The maximum likelihood estimation problem (MLE):

Given a sampled empirical distribution u € A,_1, which point p € M did

it most likely come from? In other words, we wish to maximize ¢,(p) over
all points p € M.
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Log-Voronoi cells

There are two natural problems to consider:

© The maximum likelihood estimation problem (MLE):

Given a sampled empirical distribution u € A,_1, which point p € M did
it most likely come from? In other words, we wish to maximize ¢,(p) over
all points p € M.

© Computing logarithmic Voronoi cells:

Given a point in the model g € M, what is the set of all points u € A, 1
that have g as a global maximum when optimizing the function ¢,7

We call the set of all such elements u € A,_; above the logarithmic
Voronoi cell of q.
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Log-normal spaces and polytopes

Suppose our algebraic statistical model M is given by the vanishing set of
the polynomial system f = (fi, - ,fn). Let u € Ap_1 be fixed.

@ The method of Lagrange multipliers can be used to find critical points
of £,(x) = vy log x1 + up log xo + - - - + up, log x,, given the constraints f.

o We form the augmented Jacobian:

Vh

_ Jr _ :
A= [ Vi, ] IR
VY,

@ All (¢ + 1) x (c+ 1) minors of A must vanish, where c is the
co-dimension of M.
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Log-normal spaces and polytopes

Fix some point g € M and let u vary.
@ Vanishing of (¢ + 1) x (¢ + 1) minors is a linear condition in u;.

@ The log-normal space of q is the linear space of possible data points u
that have a chance of getting mapped to g via the MLE (all points at
which all minors vanish).

log Ng(M) = {uivi+ -+ upvy - u € R"} for some fixed v; € R".

o Intersecting log Vg with the simplex A,_1, we obtain a polytope,
which we call the log-normal polytope of q.

@ The log-normal polytope of g contains the log-Voronoi cell of g.
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The Hardy-Weinberg curve

Consider a model parametrized by

p— (p>.2p(1—p),(1-p)?).

Performing implicitization, we find that the model M = V(f) where
f . C3 — C? is given by:

4X1X3—X22
x1+x+x3—1|"

The augmented Jacobian is given by:

dx3  —2x0 4Ax
A= 1 1 1
ur/x1 up/xx u3/x3

Fix a point g € M and substitute x; for g; in A. All points u € R3 at
which the determinant vanishes define the log-normal space at gq.
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The Hardy-Weinberg curve

detA:4u1—4U3—4uz-%+2u1-§—i—2U3-§—§+4u2-i—g J

For example, at p = 0.2, we get a point g = (0.04,0.32,0.64) € M. The
log-normal space at q is the plane

20u1 + 7.5up — 5uz = 0.

Sampling more points, we get the following pictures:
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The Hardy-Weinberg curve

det A =du — duz — dup - 2 +2uy - 22 —2uz - 22 4 dupy - 2

For example, at p = 0.2, we get a point g = (0.04,0.32,0.64) € M. The
log-normal space at q is the plane

20u1 + 7.5up — buz = 0.
Sampling more points, we get the following pictures:

Log-normal spaces
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The Hardy-Weinberg curve

x1

det A=4u; —duz —4up - 32 +2u -2 —2u3- 2 +4up- 2 J

For example, at p = 0.2, we get a point g = (0.04,0.32,0.64) € M. The
log-normal space at q is the plane

20u1 + 7.5up — buz = 0.

Sampling more points, we get the following pictures:

Log-normal spaces Log-normal polytopes = Log-Voronoi cells

o F = £ DA
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Two-bits independence model

Consider a model parametrized by

P1P2
pi(1 — p2)
(1 - p1)p2
(1—p1)(1 = p2)

(p1,p2) —

Computing the elimination ideal, we get

M = V(f) where

X1X4 — X2X3
X1+xo+x3+x4—1]°
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Two-bits independence model

The augmented Jacobian is given by

X4 —X3 — X2 X1
A= 1 1 1 1
ul/x1 u/xo u3/x3 Us/xa

For any point g = (q1, 92, g3, ga) € M. The four 3 x 3 minors at q are
iven b

g1 g2 %
u1—u;;—%+%_%+%
U1—U4+u:7—i’2_”3_gl_% uz_g‘t
U2—U3+%_%_%+%‘
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The log normal space at g is parametrized as

qffql qa 919219144
(q1+2)q3 (q12—|-q2)q4
9192+92G3 95> —42q3

us3 (q1+92)a3 + Uy (q1+92)qa

1 0

0 1

Intersecting with the simplex, we get that the log-normal polytope at each
point is a line segment.

Yulia Alexandr Logarithmic Voronoi cells October 13, 2021 12/33



The log normal space at g is parametrized as

qffql qa 919219144
(q1ta2)a3 (a1+02)qa
9192+92G3 95> —42q3

us3 (q1+92)a3 + Uy (q1+92)qa
1 0
0 1

Intersecting with the simplex, we get that the log-normal polytope at each
point is a line segment.
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Twisted cubic

M is parametrized by

p— (p*,3p%(1—p),3p(1 - p)*, (1 — p)?).
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When are log-Voronoi cells polytopes?

If M is a finite model, then logarithmic Voronoi cells log VorM(p) are
polytopes for each p € M.
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When are log-Voronoi cells polytopes?

If M is a finite model, then logarithmic Voronoi cells log VorM(p) are
polytopes for each p € M.

Let © C R? be a parameter space. Suppose M is given by
f:0— An—l : (91, s ,Gd) d (fl(e), sy f,,(9))
Then ¢,(p) = >, ujlog fi(0). The likelihood equations are

”u, of:

f 89 =0 for j € [d].

The maximum likelihood degree (ML degree) of M is the number of
complex solutions to the likelihood equations for generic data u.
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When are log-Voronoi cells polytopes?

If M is a finite model, then logarithmic Voronoi cells log VorM(p) are
polytopes for each p € M.

Let © C R? be a parameter space. Suppose M is given by
f : e — An,]_ . (917 e aed) = (fl(e)v Tty fn(e))
Then £,(p) = Y1 uilog fi(#). The likelihood equations are

"y Of,
2. 2L —0for g .
2% o, 0 for j € [d]

The maximum likelihood degree (ML degree) of M is the number of
complex solutions to the likelihood equations for generic data u.

If M is a model of ML degree 1, then the logarithmic Voronoi cell at every
p € M equals its log-normal polytope.
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When are log-Voronoi cells polytopes?

A discrete linear model is given parametrically by nonzero linear
polynomials.

Theorem (A., Heaton)

Let M be a linear model. Then the logarithmic Voronoi cells are equal to
their log-normal polytopes.
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When are log-Voronoi cells polytopes?

A discrete linear model is given parametrically by nonzero linear
polynomials.

Theorem (A., Heaton)

Let M be a linear model. Then the logarithmic Voronoi cells are equal to
their log-normal polytopes.

For an m x n integer matrix A with 1 € rowspan(A), the corresponding
toric model M 4 is defined to be the set of all points p € A,,_1 such that
log(p) € rowspan(A).

Theorem (A., Heaton)

Let A be an integer matrix with 1 in its row span and let M s be the
associated toric model. Then for any point p € M, the log-Voronoi cell of
p is equal to the log-normal polytope at p.

Yulia Alexandr Logarithmic Voronoi cells October 13, 2021 15 /33



Discrete linear models

Any d-dimensional linear model inside A,_1 can be written as
M={c—Bx:xe0}

where B is a n x d matrix, whose columns sum to 0, and c € R" is a
vector, whose coordinates sum to 1.
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Discrete linear models

Any d-dimensional linear model inside A,_1 can be written as
M={c—Bx:xe0}

where B is a n x d matrix, whose columns sum to 0, and c € R" is a
vector, whose coordinates sum to 1.

A co-circuit of B is a vector v € R" of minimal support such that vB = 0.
A co-circuit is positive if all its coordinates are positive.

We call a point p = (p1, ..., pn) € M is interior if p; > 0 for all i € [n].

How can we describe logarithmic Voronoi cells of interior points in M?
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Interior points

For an interior point p € M, the logarithmic Voronoi cell at p is the set

n
log Vor pm(p) = {r-diag(p) eR":rB=0, r>0, Zr,-p,- = 1}.
i=1

Proposition

For any interior point p € M, the vertices of log Vor r¢(p) are of the form

v - diag(p) where v are unique representatives of the positive co-circuits of
B such that 37, vipi = 1.
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Gale diagrams

Let {v1,...,v,} be a vector configuration in R?, whose affine hull has
dimension d. Consider the matrix

A [ 1 1 .- 1 ] .
V]_ V2 P vn
Let {Bi,...,By_q—1} be a basis for ker(A) and B :=[B1 By -+ Bp_4-1]

The configuration {b1,...,b,_q_1} of row vectors of B is the Gale
diagram of {vi,...,vu}.
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Gale diagrams
Let {v1,...,v,} be a vector configuration in R?, whose affine hull has
dimension d. Consider the matrix

A [ 1 1 .- 1 ] -
V]_ V2 e vn
Let {Bi,...,By_q—1} be a basis for ker(A) and B :=[B1 By -+ Bp_4-1]

The configuration {b1,...,b,_4_1} of row vectors of B is the Gale
diagram of {v1,...,vp}.

Theorem (A.)

For any interior point p € M, the logarithmic Voronoi cell of p is
combinatorially isomorphic to the dual of the polytope obtained by taking
the convex hull of a vector configuration with Gale diagram B.

Corollary

Logarithmic Voronoi cells of all interior points in a linear models have the
same combinatorial type.

v
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£ L

Every (n — d — 1)-dimensional polytopes with at most n facets appears as a
log-Voronoi cell of a d-dimensional linear model inside A,,_1.

Proposition
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Examples

B=[1,-5,3,1]T
c=(1/4,1/4,1/4,1/4)
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On the boundary

Let M be a 1-dimensional linear model inside the simplex A,_1. Then
M ={c— Bx:x € 0}, where

B=1[bs ... by bmi1 ... by]" and c = (cy).

>0 <0

Then © is the interval [xp, x,] = [c¢/ by, ¢/ br] where b, < 0 and b, > 0.
The log-Voronoi cell at x, is the polytope at the boundary of A,,_1 with
the vertices

(ci — bicr/br))b; (g — bj(cr/br))bi iz,
b ;— i1 bi>0, 5.
A { bici—big bici—biG; O b<o

vij

The vertex vj; degenerates into the vertex e; iff M,; = 0, where M = [B ¢].
The log-Voronoi cell at xy is described similarly.
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Non-polytopal example

@ M is a 3-dimensional model inside the 5-dimensional simplex given by:
fo=xo+x1+x2+x3+x3+x5—1
fi = 20xgxox4 — 10x0x32 — 8X12X4 + dx1x0x3 — XS’
f> = 100xgx2x5 — 20x0X3X4 — 40X12X5 + 4x1x0Xa + 2X1x32 — X22X3
f3 = 100xpx3Xx5 — 4Ox0xf — 20x1x0x5 + 4x1X3X8 + 2X22X4 — xzx§
f4 = 20x1X3x5 — 8X1xf — 10X22X5 + 4xox3X4 — xg‘?’
; ; — (518 124 192 168 86 307
® Pick point p = (9375’ 6257 6257 625 625 9375) M.

@ 225 4 x 4 minors of augmented Jacobian define the log-normal space.
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Non-polytopal example

@ Log-normal space of p is 3-dimensional, and the log-normal polytope
of p is a hexagon.

@ Using the numerical Julia package HomotopyContinuation.jl, we may
compute the logarithmic Voronoi cell of p:

(joint work with Alex Heaton and Sascha Timme)
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Continuous statistical models

Let X be an m-dimensional random vector, which has the density function

1 1 - m
pus(x) = ()2 (det )12 exp {_i(x — )T (x — M)} , xeR

with respect to the parameters ;1 € R™ and * € PD,,.

Such X is distributed according to the multivariate normal distribution, also
called the Gaussian distribution N'(u, X).

For © C R™ x PD,,, the statistical model

Po = {N(1,%): 6= (%) € ©}

is called a Gaussian model.
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Gaussian models

For a sampled data consisting of n vectors X(1) ... X(M ¢ R™ we define
the sample mean and sample covariance as

n

I R 1 N oov o o
X:EZX() and S:EZ(X()—X)(X()—X)T,
i=1 i=1

respectively. The log-likelihood function is defined as
n 1 -1y _Nog Ts—1(y
Kn(M,Z):—ElogdetZ—ztr (s=7Y) —E(X—u) Y (X — ).

The problem of maximizing ¢,(X) over © is maximum likelihood
estimation.

The logarithmic Voronoi cell of § = (u,X) € ©, is the set of all
multivariate distributions (X, S) for which ¢, is maximized at 6.

Yulia Alexandr Logarithmic Voronoi cells October 13, 2021 25 /33



Gaussian models

Proposition

Consider the Gaussian model with parameter space © = ©1 x {ld,} for
some ©1 C R™. For any point in this model, its logarithmic Vioronoi cell is
equal to its Euclidean Voronoi cell.

In practice, we consider models given by parameter spaces of the form
© = R™ x ©, where ©, C PD,,. The log-likelihood function is then

(%, S) = —g log det T — gtr(SZ_l).
For ¥ € ©,, the log-normal matrix space Ny©, at ¥ is the set of

S € Sym,,(R) such that ¥ appears as a critical point of ¢,(X,S). The
intersection PD,,, N N5 ©; is the log-normal spectrahedron of L.

If ¥ is a covariance matrix, its inverse ¥ 1 is a concentration matrix.
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Concentration models
Let G = (V, E) be a simple undirected graph with |V(G)| = m. A
concentration model of G is the model © = R™ x ©, where

©2 = {X € PDp : (X);' = 0if ij ¢ E(G) and i # j}.

Proposition (A., Hosten)

Let ©, be a concentration model of some graph G. For a point ¥~ € O,
its logaritmic Voronoi cell is equal to its log-normal spectrahedron.

In fact, we can describe log Vorg(X) as:

log Vorg(X) = {S € PDy, : Xjj = §j; for all ij € E(G) and i = j}.
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Example

1 2 3 4
The concentration model of e—e—e—e is defined by

O = {Z = (O’U) S PD4 : (2_1)13 = (2_1)14 = (2_1)24 = 0}

14
Let ¥ = I 5
% 1 2 9
6 1 x y
Then log Vorg(X) = ¢ (x,y,2) : >1< I 213 ; =0
y z 2 9
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Bivariate correlation models

A bivariate correlation model is a model given by the parameter space

0, = {ZX = [)1( ’{] ' x € (—1,1)}.

Given S, the derivative of (X, S) is ﬁ - f(x) where

f(x) = x> — bx*> —x(1—2a) — b
where a = (511 + 522)/2 and b = S15.

The polynomial £ has three critical points in the model iff Af(b,a) >0
and a < 1/2.
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Bivariate correlation models

Given some X . € O,, what is its logarithmic Voronoi cell?

o = = E A
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Bivariate correlation models

Given some X . € O,, what is its logarithmic Voronoi cell?
@ ¢ must be a root of f(x).
@ Setting f(c) =0, get a = 1":2%3;”’“.
@ Only S € PD,, satisfying this have ¥ as a critical point of £,(%, S).
o If either Af(b,a) < 0ora>1/2, then S € logVoreg,(X).
o If Af(b,a) >0and a<1/2, let ¢; and ¢, be the other roots of f(x).

o In this case, S € log Vorg(X) iff p(Xc, S) > ln(X,,S) for i =1,2.

Proposition (A., Hosten)

Logarithmic Vioronoi cells of bivariate correlation models are, in general,
not equal to their log-normal spectrahedra.
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Equicorrelation models

An equicorrelation model, denoted by E,,, is given by the parameter space
O ={X, e Sym(R"): X =1,X;;=xfori#j,i,j€[m],x € RINPD,,.

How do we find the logarithmic Voronoi cell of .7

@ For every S, consider the symmetrized sample covariance matrix

-1 T
§=—1> PSP
PeSn

o Note S; = a and S;; = b whenever i # j, and (S, ;1) = (5, 1)
@ The critical points for a general S with S;; = a and §,-J- =bfoti#jis

given by the points X, where r is a root of the cubic

fin(x) = (m—=1)x3+ ((m—2)(a—1) — (m—1)b)x* + (2a— 1)x — b.
@ Set fm(c) = 0 to get the relationship between a and b that any

S € logVorg,,(X.) must satisfy.
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Equicorrelation models

An equicorrelation model, denoted by E,,, is given by the parameter space
©; = {ZX € Sym(Rm) Y= 1,2,:,' = x for i #j,i,j S [m],x € R}QPDm .

How do we find the logarithmic Voronoi cell of .7
o If Arpm(b,a) <0, then S € log Vorg(Z.).

o If Af m(b,a) >0, we might have to evaluate {(e, S), at the other two
roots of f,, and compare it to (X, S).

@ These inequalities are expressions in b only.

Proposition

Logarithmic Vioronoi cells of equicorrelation models are, in general, not
equal to their log-normal spectrahedra.

In statistical practice, the matrices S with three critical points in the model
are rare, even for small sample sizes [Amendola, Zwernik]. So we may
approximate log-Voronoi cells by log-normal spectrahedra.
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Thanks!
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