## Logarithmic Voronoi cells

Yulia Alexandr (UC Berkeley)

SFSU Algebra, Geometry, and Combinatorics Seminar October 13, 2021

## Voronoi cells in the Euclidean case

> from Wikipedia:

Let $X$ be a finite point configuration in $\mathbb{R}^{n}$.


- The Voronoi cell of $x \in X$ is the set of all points that are closer to $x$ than any other $y \in X$, in the Euclidean metric.
- The subset of points that are equidistant from $x$ and any other points in $X$ is the boundary of the Voronoi cell of $x$.
- Voronoi cells partition $\mathbb{R}^{n}$ into convex polyhedra.

If $X$ is a variety, each Voronoi cell is a convex semialgebraic set in the normal space of $X$ at a point. The algebraic boundaries of these Voronoi cells were computed by Cifuentes, Ranestad, Sturmfels and Weinstein.

Log-Voronoi cells for discrete models
We explore Voronoi cells in the context of algebraic statistics.

- A probability simplex is defined as

$$
\Delta_{n-1}=\left\{\left(p_{1}, \ldots, p_{n}\right): p_{1}+\cdots+p_{n}=1, p_{i} \geq 0 \text { for } i \in[n]\right\}
$$



- A statistical model $\mathcal{M}$ is a subset of a probability simplex.
- An algebraic statistical model is a subset $\mathcal{M}=\mathcal{V}(f) \cap \Delta_{n-1}$ for some polynomial system of equations $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$.
- For an empirical data point $u=\left(u_{1}, \ldots, u_{n}\right) \in \Delta_{n-1}$, the log-likelihood function defined by $u$ assuming distribution $p=\left(p_{1}, \ldots, p_{n}\right) \in \mathcal{M}$ is

$$
\ell_{u}(p)=u_{1} \log p_{1}+u_{2} \log p_{2}+\cdots+u_{n} \log p_{n}+\log (c)
$$

## Ice Cream! $\theta$

## Ice Cream! $\hat{\theta}$



## Ice Cream!


$\left(p_{1}, p_{2}, p_{3}\right)$

## Ice Cream!


$\left(p_{1}, p_{2}, p_{3}\right)$


## Ice Cream!



Ice Cream! $\theta \theta$

$\left(p_{1}, p_{2}, p_{3}\right)$


$$
\begin{gathered}
L=c \cdot p_{1}^{4 / 9} p_{2}^{4 / 9} p_{3}^{1 / 9} \\
\ell_{u}=4 / 9 \cdot \log \left(p_{1}\right)+4 / 9 \cdot \log \left(p_{2}\right)+1 / 9 \cdot \log \left(p_{3}\right)+\log (c)
\end{gathered}
$$

## Log-Voronoi cells

There are two natural problems to consider:
(1) The maximum likelihood estimation problem (MLE):

Given a sampled empirical distribution $u \in \Delta_{n-1}$, which point $p \in \mathcal{M}$ did it most likely come from? In other words, we wish to maximize $\ell_{u}(p)$ over all points $p \in \mathcal{M}$.

## Log-Voronoi cells

There are two natural problems to consider:
(1) The maximum likelihood estimation problem (MLE):

Given a sampled empirical distribution $u \in \Delta_{n-1}$, which point $p \in \mathcal{M}$ did it most likely come from? In other words, we wish to maximize $\ell_{u}(p)$ over all points $p \in \mathcal{M}$.
(2) Computing logarithmic Voronoi cells:

Given a point in the model $q \in \mathcal{M}$, what is the set of all points $u \in \Delta_{n-1}$ that have $q$ as a global maximum when optimizing the function $\ell_{u}$ ?

We call the set of all such elements $u \in \Delta_{n-1}$ above the logarithmic Voronoi cell of $q$.

## Log-normal spaces and polytopes

Suppose our algebraic statistical model $\mathcal{M}$ is given by the vanishing set of the polynomial system $f=\left(f_{1}, \cdots, f_{m}\right)$. Let $u \in \Delta_{n-1}$ be fixed.

- The method of Lagrange multipliers can be used to find critical points of $\ell_{u}(x)=u_{1} \log x_{1}+u_{2} \log x_{2}+\cdots+u_{n} \log x_{n}$ given the constraints $f$.
- We form the augmented Jacobian:

$$
A=\left[\begin{array}{c}
\mathcal{J}_{f} \\
\nabla \ell_{u}
\end{array}\right]=\left[\begin{array}{c}
\nabla f_{1} \\
\vdots \\
\nabla f_{m} \\
\nabla \ell_{u}
\end{array}\right]
$$

- All $(c+1) \times(c+1)$ minors of $A$ must vanish, where $c$ is the co-dimension of $\mathcal{M}$.


## Log-normal spaces and polytopes

Fix some point $q \in \mathcal{M}$ and let $u$ vary.

- Vanishing of $(c+1) \times(c+1)$ minors is a linear condition in $u_{i}$.
- The log-normal space of $q$ is the linear space of possible data points $u$ that have a chance of getting mapped to $q$ via the MLE (all points at which all minors vanish).

$$
\log \mathcal{N}_{q}(\mathcal{M})=\left\{u_{1} \boldsymbol{v}_{1}+\cdots+u_{n} \boldsymbol{v}_{n}: u \in \mathbb{R}^{n}\right\} \text { for some fixed } \boldsymbol{v}_{i} \in \mathbb{R}^{n}
$$

- Intersecting $\log \mathcal{N}_{q}$ with the simplex $\Delta_{n-1}$, we obtain a polytope, which we call the log-normal polytope of $q$.
- The log-normal polytope of $q$ contains the $\log$-Voronoi cell of $q$.


## The Hardy-Weinberg curve

Consider a model parametrized by

$$
p \mapsto\left(p^{2}, 2 p(1-p),(1-p)^{2}\right) .
$$

Performing implicitization, we find that the model $\mathcal{M}=\mathcal{V}(f)$ where $f: \mathbb{C}^{3} \rightarrow \mathbb{C}^{2}$ is given by:

$$
f=\left[\begin{array}{c}
4 x_{1} x_{3}-x_{2}^{2} \\
x_{1}+x_{2}+x_{3}-1
\end{array}\right]
$$

The augmented Jacobian is given by:

$$
A=\left[\begin{array}{ccc}
4 x_{3} & -2 x_{2} & 4 x_{1} \\
1 & 1 & 1 \\
u_{1} / x_{1} & u_{2} / x_{2} & u_{3} / x_{3}
\end{array}\right]
$$

Fix a point $q \in \mathcal{M}$ and substitute $x_{i}$ for $q_{i}$ in $A$. All points $u \in \mathbb{R}^{3}$ at which the determinant vanishes define the log-normal space at $q$.

## The Hardy-Weinberg curve

$\operatorname{det} A=4 u_{1}-4 u_{3}-4 u_{2} \cdot \frac{x_{1}}{x_{2}}+2 u_{1} \cdot \frac{x_{2}}{x_{1}}-2 u_{3} \cdot \frac{x_{2}}{x_{3}}+4 u_{2} \cdot \frac{x_{3}}{x_{2}}$
For example, at $p=0.2$, we get a point $q=(0.04,0.32,0.64) \in \mathcal{M}$. The log-normal space at $q$ is the plane

$$
20 u_{1}+7.5 u_{2}-5 u_{3}=0 .
$$

Sampling more points, we get the following pictures:

## The Hardy-Weinberg curve

 $\operatorname{det} A=4 u_{1}-4 u_{3}-4 u_{2} \cdot \frac{x_{1}}{x_{2}}+2 u_{1} \cdot \frac{x_{2}}{x_{1}}-2 u_{3} \cdot \frac{x_{2}}{x_{3}}+4 u_{2} \cdot \frac{x_{3}}{x_{2}}$For example, at $p=0.2$, we get a point $q=(0.04,0.32,0.64) \in \mathcal{M}$. The log-normal space at $q$ is the plane

$$
20 u_{1}+7.5 u_{2}-5 u_{3}=0 .
$$

Sampling more points, we get the following pictures:


## The Hardy-Weinberg curve

$\operatorname{det} A=4 u_{1}-4 u_{3}-4 u_{2} \cdot \frac{x_{1}}{x_{2}}+2 u_{1} \cdot \frac{x_{2}}{x_{1}}-2 u_{3} \cdot \frac{x_{2}}{x_{3}}+4 u_{2} \cdot \frac{x_{3}}{x_{2}}$
For example, at $p=0.2$, we get a point $q=(0.04,0.32,0.64) \in \mathcal{M}$. The log-normal space at $q$ is the plane

$$
20 u_{1}+7.5 u_{2}-5 u_{3}=0 .
$$

Sampling more points, we get the following pictures:


Log-normal polytopes $=$ Log-Voronoi cells

## Two-bits independence model

Consider a model parametrized by

$$
\left(p_{1}, p_{2}\right) \mapsto\left[\begin{array}{c}
p_{1} p_{2} \\
p_{1}\left(1-p_{2}\right) \\
\left(1-p_{1}\right) p_{2} \\
\left(1-p_{1}\right)\left(1-p_{2}\right)
\end{array}\right] .
$$

Computing the elimination ideal, we get $\mathcal{M}=\mathcal{V}(f)$ where

$$
f=\left[\begin{array}{c}
x_{1} x_{4}-x_{2} x_{3} \\
x_{1}+x_{2}+x_{3}+x_{4}-1
\end{array}\right] .
$$

## Two-bits independence model

Consider a model parametrized by

$$
\left(p_{1}, p_{2}\right) \mapsto\left[\begin{array}{c}
p_{1} p_{2} \\
p_{1}\left(1-p_{2}\right) \\
\left(1-p_{1}\right) p_{2} \\
\left(1-p_{1}\right)\left(1-p_{2}\right)
\end{array}\right] .
$$

Computing the elimination ideal, we get $\mathcal{M}=\mathcal{V}(f)$ where

$$
f=\left[\begin{array}{c}
x_{1} x_{4}-x_{2} x_{3} \\
x_{1}+x_{2}+x_{3}+x_{4}-1
\end{array}\right] .
$$

## Two-bits independence model

The augmented Jacobian is given by

$$
A=\left[\begin{array}{rrrr}
x_{4} & -x_{3} & -x_{2} & x_{1} \\
1 & 1 & 1 & 1 \\
u_{1} / x_{1} & u_{2} / x_{2} & u_{3} / x_{3} & u_{4} / x_{4}
\end{array}\right] .
$$

For any point $q=\left(q_{1}, q_{2}, q_{3}, q_{4}\right) \in \mathcal{M}$. The four $3 \times 3$ minors at $q$ are given by

$$
\begin{aligned}
& u_{2}-u_{3}-\frac{u_{1} q_{2}}{q_{1}}+\frac{u_{1} q_{3}}{q_{1}}+\frac{u_{2} q_{4}}{q_{2}}-\frac{u_{3} q_{4}}{q_{3}} \\
& u_{1}-u_{4}-\frac{u_{2} q_{1}}{q_{2}}+\frac{u_{1} q_{3}}{q_{1}}-\frac{u_{4} q_{3}}{q_{4}}+\frac{u_{2} q_{4}}{q_{2}} \\
& u_{1}-u_{4}+\frac{u_{1} q_{2}}{q_{1}}-\frac{u_{3} q_{1}}{q_{3}}-\frac{u_{4} q_{4}}{q_{4}}+\frac{u_{3} q_{3}}{q_{3}} \\
& u_{2} u_{1} q_{2}
\end{aligned}-\frac{u_{3} q_{1}}{q_{3}}-\frac{u_{4} q_{2}}{q_{4}}+\frac{u_{4} q_{3}}{q_{4}} . . ~ \$
$$

The log normal space at $q$ is parametrized as

$$
u_{3}\left(\begin{array}{r}
\frac{q_{1}^{2}-q_{1} q_{4}}{\left(q_{1}+q_{2}\right) q_{3}} \\
\frac{q_{1} q_{2}+q_{2} q_{3}}{\left(q_{1}+q_{2}\right) q_{3}} \\
1 \\
0
\end{array}\right)+u_{4}\left(\begin{array}{r}
\frac{q_{1} q_{2}+q_{1} q_{4}}{\left(q_{1}+q_{2}\right) q_{4}} \\
\frac{q_{2}^{2}-q_{2} q_{3}}{\left(q_{1}+q_{2}\right) q_{4}} \\
0 \\
1
\end{array}\right)
$$

Intersecting with the simplex, we get that the log-normal polytope at each point is a line segment.

The log normal space at $q$ is parametrized as

$$
u_{3}\left(\begin{array}{r}
\frac{q_{1}^{2}-q_{1} q_{4}}{\left(q_{1}+q_{2}\right) q_{3}} \\
\frac{q_{1} q_{2}+q_{2} q_{3}}{\left(q_{1}+q_{2}\right) q_{3}} \\
1 \\
0
\end{array}\right)+u_{4}\left(\begin{array}{r}
\frac{q_{1} q_{2}+q_{1} q_{4}}{\left(q_{1}+q_{2}\right) q_{4}} \\
\frac{q_{2}^{2}-q_{2} q_{3}}{\left(q_{1}+q_{2}\right) q_{4}} \\
0 \\
1
\end{array}\right)
$$

Intersecting with the simplex, we get that the log-normal polytope at each point is a line segment.


## Twisted cubic

$\mathcal{M}$ is parametrized by

$$
p \mapsto\left(p^{3}, 3 p^{2}(1-p), 3 p(1-p)^{2},(1-p)^{3}\right) .
$$



## When are log-Voronoi cells polytopes?

If $\mathcal{M}$ is a finite model, then logarithmic Voronoi cells $\log \operatorname{Vor} \mathcal{M}(p)$ are polytopes for each $p \in \mathcal{M}$.

## When are log-Voronoi cells polytopes?

If $\mathcal{M}$ is a finite model, then logarithmic Voronoi cells $\log \operatorname{Vor} \mathcal{M}(p)$ are polytopes for each $p \in \mathcal{M}$.

Let $\Theta \subseteq \mathbb{R}^{d}$ be a parameter space. Suppose $\mathcal{M}$ is given by

$$
f: \Theta \rightarrow \Delta_{n-1}:\left(\theta_{1}, \cdots, \theta_{d}\right) \mapsto\left(f_{1}(\theta), \cdots, f_{n}(\theta)\right) .
$$

Then $\ell_{u}(p)=\sum_{i=1}^{n} u_{i} \log f_{i}(\theta)$. The likelihood equations are

$$
\sum_{i=1}^{n} \frac{u_{i}}{f_{i}} \cdot \frac{\partial f_{i}}{\partial \theta_{j}}=0 \text { for } j \in[d] .
$$

The maximum likelihood degree (ML degree) of $\mathcal{M}$ is the number of complex solutions to the likelihood equations for generic data $u$.

## When are log-Voronoi cells polytopes?

If $\mathcal{M}$ is a finite model, then logarithmic Voronoi cells $\log \operatorname{Vor} \mathcal{M}(p)$ are polytopes for each $p \in \mathcal{M}$.

Let $\Theta \subseteq \mathbb{R}^{d}$ be a parameter space. Suppose $\mathcal{M}$ is given by

$$
f: \Theta \rightarrow \Delta_{n-1}:\left(\theta_{1}, \cdots, \theta_{d}\right) \mapsto\left(f_{1}(\theta), \cdots, f_{n}(\theta)\right)
$$

Then $\ell_{u}(p)=\sum_{i=1}^{n} u_{i} \log f_{i}(\theta)$. The likelihood equations are

$$
\sum_{i=1}^{n} \frac{u_{i}}{f_{i}} \cdot \frac{\partial f_{i}}{\partial \theta_{j}}=0 \text { for } j \in[d] .
$$

The maximum likelihood degree (ML degree) of $\mathcal{M}$ is the number of complex solutions to the likelihood equations for generic data $u$.

If $\mathcal{M}$ is a model of $M L$ degree 1 , then the logarithmic Voronoi cell at every $p \in \mathcal{M}$ equals its log-normal polytope.

## When are log-Voronoi cells polytopes?

A discrete linear model is given parametrically by nonzero linear polynomials.

Theorem (A., Heaton)
Let $\mathcal{M}$ be a linear model. Then the logarithmic Voronoi cells are equal to their log-normal polytopes.

## When are log-Voronoi cells polytopes?

A discrete linear model is given parametrically by nonzero linear polynomials.

Theorem (A., Heaton)
Let $\mathcal{M}$ be a linear model. Then the logarithmic Voronoi cells are equal to their log-normal polytopes.

For an $m \times n$ integer matrix $A$ with $1 \in \operatorname{rowspan}(A)$, the corresponding toric model $\mathcal{M}_{A}$ is defined to be the set of all points $p \in \Delta_{n-1}$ such that $\log (p) \in \operatorname{rowspan}(A)$.

Theorem (A., Heaton)
Let $A$ be an integer matrix with 1 in its row span and let $\mathcal{M}_{A}$ be the associated toric model. Then for any point $p \in \mathcal{M}$, the log-Voronoi cell of $p$ is equal to the log-normal polytope at $p$.

## Discrete linear models

Any $d$-dimensional linear model inside $\Delta_{n-1}$ can be written as

$$
\mathcal{M}=\{c-B x: x \in \Theta\}
$$

where $B$ is a $n \times d$ matrix, whose columns sum to 0 , and $c \in \mathbb{R}^{n}$ is a vector, whose coordinates sum to 1 .

## Discrete linear models

Any $d$-dimensional linear model inside $\Delta_{n-1}$ can be written as

$$
\mathcal{M}=\{c-B x: x \in \Theta\}
$$

where $B$ is a $n \times d$ matrix, whose columns sum to 0 , and $c \in \mathbb{R}^{n}$ is a vector, whose coordinates sum to 1 .

A co-circuit of $B$ is a vector $v \in \mathbb{R}^{n}$ of minimal support such that $v B=0$.
A co-circuit is positive if all its coordinates are positive.
We call a point $p=\left(p_{1}, \ldots, p_{n}\right) \in \mathcal{M}$ is interior if $p_{i}>0$ for all $i \in[n]$.
How can we describe logarithmic Voronoi cells of interior points in $\mathcal{M}$ ?

## Interior points

For an interior point $p \in \mathcal{M}$, the logarithmic Voronoi cell at $p$ is the set

$$
\log \operatorname{Vor}_{\mathcal{M}}(p)=\left\{r \cdot \operatorname{diag}(p) \in \mathbb{R}^{n}: r B=0, r \geq 0, \sum_{i=1}^{n} r_{i} p_{i}=1\right\}
$$

## Proposition

For any interior point $p \in \mathcal{M}$, the vertices of $\log \operatorname{Vor}_{\mathcal{M}}(p)$ are of the form $v \cdot \operatorname{diag}(p)$ where $v$ are unique representatives of the positive co-circuits of $B$ such that $\sum_{i=1}^{n} v_{i} p_{i}=1$.

## Gale diagrams

Let $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ be a vector configuration in $\mathbb{R}^{d}$, whose affine hull has dimension $d$. Consider the matrix

$$
A=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \cdots & \boldsymbol{v}_{n}
\end{array}\right] .
$$

Let $\left\{B_{1}, \ldots, B_{n-d-1}\right\}$ be a basis for $\operatorname{ker}(A)$ and $B:=\left[B_{1} B_{2} \cdots B_{n-d-1}\right]$. The configuration $\left\{\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n-d-1}\right\}$ of row vectors of $B$ is the Gale diagram of $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$.

## Gale diagrams

Let $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ be a vector configuration in $\mathbb{R}^{d}$, whose affine hull has dimension $d$. Consider the matrix

$$
A=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \cdots & \boldsymbol{v}_{n}
\end{array}\right]
$$

Let $\left\{B_{1}, \ldots, B_{n-d-1}\right\}$ be a basis for $\operatorname{ker}(A)$ and $B:=\left[B_{1} B_{2} \cdots B_{n-d-1}\right]$. The configuration $\left\{\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n-d-1}\right\}$ of row vectors of $B$ is the Gale diagram of $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$.

## Theorem (A.)

For any interior point $p \in \mathcal{M}$, the logarithmic Voronoi cell of $p$ is combinatorially isomorphic to the dual of the polytope obtained by taking the convex hull of a vector configuration with Gale diagram $B$.

## Corollary

Logarithmic Voronoi cells of all interior points in a linear models have the same combinatorial type.


## Proposition

Every $(n-d-1)$-dimensional polytopes with at most $n$ facets appears as a log-Voronoi cell of a d-dimensional linear model inside $\Delta_{n-1}$.

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## Examples



$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

$$
\begin{aligned}
& B=[-2,-1,1,2]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

## On the boundary

Let $\mathcal{M}$ be a 1-dimensional linear model inside the simplex $\Delta_{n-1}$. Then $\mathcal{M}=\{c-B x: x \in \Theta\}$, where

$$
B=[\underbrace{b_{1} \ldots b_{m}}_{>0} \underbrace{b_{m+1} \ldots b_{n}}_{<0}]^{T} \text { and } c=\left(c_{i}\right) \text {. }
$$

Then $\Theta$ is the interval $\left[x_{\ell}, x_{r}\right]=\left[c_{\ell} / b_{\ell}, c_{r} / b_{r}\right]$ where $b_{\ell}<0$ and $b_{r}>0$. The log-Voronoi cell at $x_{r}$ is the polytope at the boundary of $\Delta_{n-1}$ with the vertices

$$
\left\{e_{j}: b_{j}<0\right\} \cup\{\underbrace{\frac{\left(c_{i}-b_{i}\left(c_{r} / b_{r}\right)\right) b_{j}}{b_{j} c_{i}-b_{i} c_{j}} e_{i}-\frac{\left(c_{j}-b_{j}\left(c_{r} / b_{r}\right)\right) b_{i}}{b_{j} c_{i}-b_{i} c_{j}} e_{j}}_{v_{i j}}: \begin{array}{c}
i \neq r, \\
b_{i}>0, \\
b_{j}<0
\end{array}\} .
$$

The vertex $v_{i j}$ degenerates into the vertex $e_{j}$ iff $M_{r i}=0$, where $M=[B c]$. The log-Voronoi cell at $x_{\ell}$ is described similarly.

## Non-polytopal example

- $\mathcal{M}$ is a 3-dimensional model inside the 5-dimensional simplex given by:

$$
\begin{aligned}
& f_{0}=x_{0}+x_{1}+x_{2}+x_{3}+x_{4}+x_{5}-1 \\
& f_{1}=20 x_{0} x_{2} x_{4}-10 x_{0} x_{3}^{2}-8 x_{1}^{2} x_{4}+4 x_{1} x_{2} x_{3}-x_{2}^{3} \\
& f_{2}=100 x_{0} x_{2} x_{5}-20 x_{0} x_{3} x_{4}-40 x_{1}^{2} x_{5}+4 x_{1} x_{2} x_{4}+2 x_{1} x_{3}^{2}-x_{2}^{2} x_{3} \\
& f_{3}=100 x_{0} x_{3} x_{5}-40 x_{0} x_{4}^{2}-20 x_{1} x_{2} x_{5}+4 x_{1} x_{3} x_{4}+2 x_{2}^{2} x_{4}-x_{2} x_{3}^{2} \\
& f_{4}=20 x_{1} x_{3} x_{5}-8 x_{1} x_{4}^{2}-10 x_{2}^{2} x_{5}+4 x_{2} x_{3} x_{4}-x_{3}^{3}
\end{aligned}
$$

- Pick point $p=\left(\frac{518}{9375}, \frac{124}{625}, \frac{192}{625}, \frac{168}{625}, \frac{86}{625}, \frac{307}{9375}\right) \in \mathcal{M}$.
- $2254 \times 4$ minors of augmented Jacobian define the log-normal space.


## Non-polytopal example

- Log-normal space of $p$ is 3-dimensional, and the log-normal polytope of $p$ is a hexagon.
- Using the numerical Julia package HomotopyContinuation.jl, we may compute the logarithmic Voronoi cell of $p$ :

(joint work with Alex Heaton and Sascha Timme)


## Continuous statistical models

Let $X$ be an $m$-dimensional random vector, which has the density function

$$
p_{\mu, \Sigma}(x)=\frac{1}{(2 \pi)^{m / 2}(\operatorname{det} \Sigma)^{1 / 2}} \exp \left\{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right\}, \quad x \in \mathbb{R}^{m}
$$

with respect to the parameters $\mu \in \mathbb{R}^{m}$ and $\Sigma \in \mathrm{PD}_{m}$.
Such $X$ is distributed according to the multivariate normal distribution, also called the Gaussian distribution $\mathcal{N}(\mu, \Sigma)$.

For $\Theta \subseteq \mathbb{R}^{m} \times \mathrm{PD}_{m}$, the statistical model

$$
\mathcal{P}_{\Theta}=\{\mathcal{N}(\mu, \Sigma): \theta=(\mu, \Sigma) \in \Theta\}
$$

is called a Gaussian model.

## Gaussian models

For a sampled data consisting of $n$ vectors $X^{(1)}, \cdots, X^{(n)} \in \mathbb{R}^{m}$, we define the sample mean and sample covariance as

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X^{(i)} \quad \text { and } \quad S=\frac{1}{n} \sum_{i=1}^{n}\left(X^{(i)}-\bar{X}\right)\left(X^{(i)}-\bar{X}\right)^{T},
$$

respectively. The log-likelihood function is defined as

$$
\ell_{n}(\mu, \Sigma)=-\frac{n}{2} \log \operatorname{det} \Sigma-\frac{1}{2} \operatorname{tr}\left(S \Sigma^{-1}\right)-\frac{n}{2}(\bar{X}-\mu)^{T} \Sigma^{-1}(\bar{X}-\mu) .
$$

The problem of maximizing $\ell_{n}(\Sigma)$ over $\Theta$ is maximum likelihood estimation.

The logarithmic Voronoi cell of $\theta=(\mu, \Sigma) \in \Theta$, is the set of all multivariate distributions $(\bar{X}, S)$ for which $\ell_{n}$ is maximized at $\theta$.

## Gaussian models

## Proposition

Consider the Gaussian model with parameter space $\Theta=\Theta_{1} \times\left\{I d_{m}\right\}$ for some $\Theta_{1} \subseteq \mathbb{R}^{m}$. For any point in this model, its logarithmic Voronoi cell is equal to its Euclidean Voronoi cell.

In practice, we consider models given by parameter spaces of the form $\Theta=\mathbb{R}^{m} \times \Theta_{2}$ where $\Theta_{2} \subseteq P_{m}$. The log-likelihood function is then

$$
\ell_{n}(\Sigma, S)=-\frac{n}{2} \log \operatorname{det} \Sigma-\frac{n}{2} \operatorname{tr}\left(S \Sigma^{-1}\right)
$$

For $\Sigma \in \Theta_{2}$, the log-normal matrix space $\mathcal{N}_{\Sigma} \Theta_{2}$ at $\Sigma$ is the set of $S \in \operatorname{Sym}_{m}(\mathbb{R})$ such that $\Sigma$ appears as a critical point of $\ell_{n}(\Sigma, S)$. The intersection $\mathrm{PD}_{m} \cap \mathcal{N}_{\Sigma} \Theta_{2}$ is the log-normal spectrahedron of $\Sigma$.

If $\Sigma$ is a covariance matrix, its inverse $\Sigma^{-1}$ is a concentration matrix.

## Concentration models

Let $G=(V, E)$ be a simple undirected graph with $|V(G)|=m$. A concentration model of $G$ is the model $\Theta=\mathbb{R}^{m} \times \Theta_{2}$ where

$$
\Theta_{2}=\left\{\Sigma \in \mathrm{PD}_{m}:(\Sigma)_{i j}^{-1}=0 \text { if } i j \notin E(G) \text { and } i \neq j\right\} .
$$

## Proposition (A., Hoșten)

Let $\Theta_{2}$ be a concentration model of some graph $G$. For a point $\Sigma \in \Theta_{2}$, its logaritmic Voronoi cell is equal to its log-normal spectrahedron.

In fact, we can describe $\log \operatorname{Vor}_{\Theta}(\Sigma)$ as:

$$
\log \operatorname{Vor}_{\Theta}(\Sigma)=\left\{S \in \mathrm{PD}_{m}: \Sigma_{i j}=S_{i j} \text { for all } i j \in E(G) \text { and } i=j\right\}
$$

## Example

The concentration model of $\begin{array}{llll}1 & 2 & 3 & 4 \\ \bullet & \bullet & \bullet & \text { is defined by }\end{array}$

$$
\Theta=\left\{\Sigma=\left(\sigma_{i j}\right) \in \mathrm{PD}_{4}:\left(\Sigma^{-1}\right)_{13}=\left(\Sigma^{-1}\right)_{14}=\left(\Sigma^{-1}\right)_{24}=0\right\}
$$

Let $\Sigma=\left(\begin{array}{rrrr}6 & 1 & \frac{1}{7} & \frac{1}{28} \\ 1 & 7 & 1 & \frac{1}{4} \\ \frac{1}{7} & 1 & 8 & 2 \\ \frac{1}{28} & \frac{1}{4} & 2 & 9\end{array}\right)$.

Then $\log \operatorname{Vor}_{\Theta}(\Sigma)=\left\{(x, y, z):\left(\begin{array}{cccc}6 & 1 & x & y \\ 1 & 7 & 1 & z \\ x & 1 & 8 & 2 \\ y & z & 2 & 9\end{array}\right) \succ 0\right\}$.

## Bivariate correlation models

A bivariate correlation model is a model given by the parameter space

$$
\Theta_{2}=\left\{\Sigma_{x}:=\left[\begin{array}{cc}
1 & x \\
x & 1
\end{array}\right]: x \in(-1,1)\right\} .
$$

Given $S$, the derivative of $\ell(\Sigma, S)$ is $\frac{2}{\left(1-x^{2}\right)^{2}} \cdot f(x)$ where

$$
f(x)=x^{3}-b x^{2}-x(1-2 a)-b
$$

where $a=\left(S_{11}+S_{22}\right) / 2$ and $b=S_{12}$.
The polynomial $f$ has three critical points in the model iff $\Delta_{f}(b, a)>0$ and $a<1 / 2$.

## Bivariate correlation models

Given some $\Sigma_{c} \in \Theta_{2}$, what is its logarithmic Voronoi cell?

## Bivariate correlation models

Given some $\Sigma_{c} \in \Theta_{2}$, what is its logarithmic Voronoi cell?

- $c$ must be a root of $f(x)$.
- Setting $f(c)=0$, get $a=\frac{b c^{2}-c^{3}+b+c}{2 c}$.
- Only $S \in \mathrm{PD}_{m}$ satisfying this have $\Sigma$ as a critical point of $\ell_{n}(\Sigma, S)$.
- If either $\Delta_{f}(b, a) \leq 0$ or $a \geq 1 / 2$, then $S \in \log \operatorname{Vor}_{\Theta_{2}}(\Sigma)$.
- If $\Delta_{f}(b, a)>0$ and $a<1 / 2$, let $c_{1}$ and $c_{2}$ be the other roots of $f(x)$.
- In this case, $S \in \log \operatorname{Vor}_{\ominus}(\Sigma)$ iff $\ell_{n}\left(\Sigma_{c}, S\right) \geq \ell_{n}\left(\Sigma_{c_{i}}, S\right)$ for $i=1,2$.


## Proposition (A., Hoșten)

Logarithmic Voronoi cells of bivariate correlation models are, in general, not equal to their log-normal spectrahedra.

## Equicorrelation models

An equicorrelation model, denoted by $E_{m}$, is given by the parameter space $\Theta_{2}=\left\{\Sigma_{x} \in \operatorname{Sym}\left(\mathbb{R}^{m}\right): \Sigma_{i i}=1, \Sigma_{i j}=x\right.$ for $\left.i \neq j, i, j \in[m], x \in \mathbb{R}\right\} \cap \mathrm{PD}_{m}$. How do we find the logarithmic Voronoi cell of $\Sigma_{c}$ ?

- For every $S$, consider the symmetrized sample covariance matrix

$$
\bar{S}=\frac{1}{m!} \sum_{P \in S_{m}} P S P^{T}
$$

- Note $\bar{S}_{i i}=a$ and $\bar{S}_{i j}=b$ whenever $i \neq j$, and $\left\langle S, \Sigma_{x}^{-1}\right\rangle=\left\langle\bar{S}, \Sigma_{x}^{-1}\right\rangle$.
- The critical points for a general $\bar{S}$ with $\bar{S}_{i i}=a$ and $\bar{S}_{i j}=b$ fot $i \neq j$ is given by the points $\Sigma_{r}$ where $r$ is a root of the cubic

$$
f_{m}(x)=(m-1) x^{3}+((m-2)(a-1)-(m-1) b) x^{2}+(2 a-1) x-b
$$

- Set $f_{m}(c)=0$ to get the relationship between $a$ and $b$ that any $\bar{S} \in \log \operatorname{Vor}_{E_{m}}\left(\Sigma_{c}\right)$ must satisfy.


## Equicorrelation models

An equicorrelation model, denoted by $E_{m}$, is given by the parameter space
$\Theta_{2}=\left\{\Sigma_{x} \in \operatorname{Sym}\left(\mathbb{R}^{m}\right): \Sigma_{i i}=1, \Sigma_{i j}=x\right.$ for $\left.i \neq j, i, j \in[m], x \in \mathbb{R}\right\} \cap \mathrm{PD}_{m}$.
How do we find the logarithmic Voronoi cell of $\Sigma_{c}$ ?

- If $\Delta_{f, m}(b, a)<0$, then $\bar{S} \in \log \operatorname{Vor}_{\Theta}\left(\Sigma_{c}\right)$.
- If $\Delta_{f, m}(b, a) \geq 0$, we might have to evaluate $\ell(\bullet, \bar{S})$, at the other two roots of $f_{m}$, and compare it to $\ell\left(\Sigma_{c}, \bar{S}\right)$.
- These inequalities are expressions in $b$ only.


## Proposition

Logarithmic Voronoi cells of equicorrelation models are, in general, not equal to their log-normal spectrahedra.

In statistical practice, the matrices $\bar{S}$ with three critical points in the model are rare, even for small sample sizes [Amendola, Zwernik]. So we may approximate log-Voronoi cells by log-normal spectrahedra.

## Thanks!

