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Voronoi cells in the Euclidean case

Let X be a finite point configuration in Rn.

from Wikipedia:

The Voronoi cell of x ∈ X is the set of all points that are closer to x
than any other y ∈ X , in the Euclidean metric.
The subset of points that are equidistant from x and any other points
in X is the boundary of the Voronoi cell of x .
Voronoi cells partition Rn into convex polyhedra.

If X is a variety, each Voronoi cell is a convex semialgebraic set in the
normal space of X at a point. The algebraic boundaries of these Voronoi
cells were computed by Cifuentes, Ranestad, Sturmfels and Weinstein.
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Log-Voronoi cells for discrete models
We explore Voronoi cells in the context of algebraic statistics.

A probability simplex is defined as

∆n−1 = {(p1, . . . , pn) : p1 + · · ·+ pn = 1, pi ≥ 0 for i ∈ [n]}.

A statistical model M is a subset of a probability simplex.
An algebraic statistical model is a subsetM = V(f ) ∩∆n−1 for some
polynomial system of equations f : Cn → Cm.
For an empirical data point u = (u1, ..., un) ∈ ∆n−1, the log-likelihood
function defined by u assuming distribution p = (p1, ..., pn) ∈M is

`u(p) = u1 log p1 + u2 log p2 + · · ·+ un log pn + log(c).
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Ice Cream!

(p1, p2, p3)
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Ice Cream!

(p1, p2, p3)

L = c · p4/9
1 p

4/9
2 p

1/9
3

`u = 4/9 · log(p1) + 4/9 · log(p2) + 1/9 · log(p3) + log(c).
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Log-Voronoi cells

There are two natural problems to consider:
1 The maximum likelihood estimation problem (MLE):

Given a sampled empirical distribution u ∈ ∆n−1, which point p ∈M did
it most likely come from? In other words, we wish to maximize `u(p) over
all points p ∈M.

2 Computing logarithmic Voronoi cells:

Given a point in the model q ∈M, what is the set of all points u ∈ ∆n−1
that have q as a global maximum when optimizing the function `u?

We call the set of all such elements u ∈ ∆n−1 above the logarithmic
Voronoi cell of q.
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Log-normal spaces and polytopes

Suppose our algebraic statistical modelM is given by the vanishing set of
the polynomial system f = (f1, · · · , fm). Let u ∈ ∆n−1 be fixed.

The method of Lagrange multipliers can be used to find critical points
of `u(x) = u1 log x1 +u2 log x2 + · · ·+un log xn given the constraints f .
We form the augmented Jacobian:

A =

[
Jf
∇`u

]
=


∇f1
...
∇fm
∇`u


All (c + 1)× (c + 1) minors of A must vanish, where c is the
co-dimension ofM.
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Log-normal spaces and polytopes

Fix some point q ∈M and let u vary.
Vanishing of (c + 1)× (c + 1) minors is a linear condition in ui .
The log-normal space of q is the linear space of possible data points u
that have a chance of getting mapped to q via the MLE (all points at
which all minors vanish).

logNq(M) = {u1v1 + · · ·+ unvn : u ∈ Rn} for some fixed v i ∈ Rn.

Intersecting logNq with the simplex ∆n−1, we obtain a polytope,
which we call the log-normal polytope of q.
The log-normal polytope of q contains the log-Voronoi cell of q.

Yulia Alexandr Logarithmic Voronoi cells October 13, 2021 7 / 33



The Hardy-Weinberg curve
Consider a model parametrized by

p 7→
(
p2, 2p(1− p), (1− p)2) .

Performing implicitization, we find that the modelM = V(f ) where
f : C3 → C2 is given by:

f =

[
4x1x3 − x2

2
x1 + x2 + x3 − 1

]
.

The augmented Jacobian is given by:

A =

 4x3 −2x2 4x1
1 1 1

u1/x1 u2/x2 u3/x3

 .
Fix a point q ∈M and substitute xi for qi in A. All points u ∈ R3 at
which the determinant vanishes define the log-normal space at q.
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The Hardy-Weinberg curve

detA = 4u1 − 4u3 − 4u2 · x1x2 + 2u1 · x2x1 − 2u3 · x2x3 + 4u2 · x3x2

For example, at p = 0.2, we get a point q = (0.04, 0.32, 0.64) ∈M. The
log-normal space at q is the plane

20u1 + 7.5u2 − 5u3 = 0.

Sampling more points, we get the following pictures:

Log-normal spaces Log-normal polytopes = Log-Voronoi cells
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Two-bits independence model

Consider a model parametrized by

(p1, p2) 7→


p1p2

p1(1− p2)
(1− p1)p2

(1− p1)(1− p2)

 .

Computing the elimination ideal, we get
M = V(f ) where

f =

[
x1x4 − x2x3

x1 + x2 + x3 + x4 − 1

]
.
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Two-bits independence model

The augmented Jacobian is given by

A =

 x4 −x3 −x2 x1
1 1 1 1

u1/x1 u2/x2 u3/x3 u4/x4

 .
For any point q = (q1, q2, q3, q4) ∈M. The four 3× 3 minors at q are
given by

u2 − u3 − u1q2
q1

+ u1q3
q1

+ u2q4
q2
− u3q4

q3

u1 − u4 − u2q1
q2

+ u1q3
q1
− u4q3

q4
+ u2q4

q2

u1 − u4 + u1q2
q1
− u3q1

q3
− u4q2

q4
+ u3q4

q3

u2 − u3 + u2q1
q2
− u3q1

q3
− u4q2

q4
+ u4q3

q4
.
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The log normal space at q is parametrized as

u3


q2
1−q1q4

(q1+q2)q3
q1q2+q2q3
(q1+q2)q3

1
0

+ u4


q1q2+q1q4
(q1+q2)q4
q2
2−q2q3

(q1+q2)q4

0
1

 .

Intersecting with the simplex, we get that the log-normal polytope at each
point is a line segment.
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Twisted cubic

M is parametrized by

p 7→
(
p3, 3p2(1− p), 3p(1− p)2, (1− p)3).
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When are log-Voronoi cells polytopes?
IfM is a finite model, then logarithmic Voronoi cells logVorM(p) are
polytopes for each p ∈M.

Let Θ ⊆ Rd be a parameter space. SupposeM is given by

f : Θ→ ∆n−1 : (θ1, · · · , θd) 7→ (f1(θ), · · · , fn(θ)).

Then `u(p) =
∑n

i=1 ui log fi (θ). The likelihood equations are

n∑
i=1

ui
fi
· ∂fi
∂θj

= 0 for j ∈ [d ].

The maximum likelihood degree (ML degree) ofM is the number of
complex solutions to the likelihood equations for generic data u.

IfM is a model of ML degree 1, then the logarithmic Voronoi cell at every
p ∈M equals its log-normal polytope.
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When are log-Voronoi cells polytopes?

A discrete linear model is given parametrically by nonzero linear
polynomials.

Theorem (A., Heaton)
LetM be a linear model. Then the logarithmic Voronoi cells are equal to
their log-normal polytopes.

For an m × n integer matrix A with 1 ∈ rowspan(A), the corresponding
toric modelMA is defined to be the set of all points p ∈ ∆n−1 such that
log(p) ∈ rowspan(A).

Theorem (A., Heaton)
Let A be an integer matrix with 1 in its row span and letMA be the
associated toric model. Then for any point p ∈M, the log-Voronoi cell of
p is equal to the log-normal polytope at p.
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Discrete linear models

Any d-dimensional linear model inside ∆n−1 can be written as

M = {c − Bx : x ∈ Θ}

where B is a n × d matrix, whose columns sum to 0, and c ∈ Rn is a
vector, whose coordinates sum to 1.

A co-circuit of B is a vector v ∈ Rn of minimal support such that vB = 0.
A co-circuit is positive if all its coordinates are positive.

We call a point p = (p1, . . . , pn) ∈M is interior if pi > 0 for all i ∈ [n].

How can we describe logarithmic Voronoi cells of interior points inM?
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Interior points

For an interior point p ∈M, the logarithmic Voronoi cell at p is the set

log VorM(p) =

{
r · diag(p) ∈ Rn : rB = 0, r ≥ 0,

n∑
i=1

ripi = 1

}
.

Proposition

For any interior point p ∈M, the vertices of log VorM(p) are of the form
v · diag(p) where v are unique representatives of the positive co-circuits of
B such that

∑n
i=1 vipi = 1.

Yulia Alexandr Logarithmic Voronoi cells October 13, 2021 17 / 33



Gale diagrams
Let {v1, . . . , vn} be a vector configuration in Rd , whose affine hull has
dimension d . Consider the matrix

A =

[
1 1 · · · 1
v1 v2 · · · vn

]
.

Let {B1, . . . ,Bn−d−1} be a basis for ker(A) and B := [B1 B2 · · · Bn−d−1].
The configuration {b1, . . . ,bn−d−1} of row vectors of B is the Gale
diagram of {v1, . . . , vn}.

Theorem (A.)
For any interior point p ∈M, the logarithmic Voronoi cell of p is
combinatorially isomorphic to the dual of the polytope obtained by taking
the convex hull of a vector configuration with Gale diagram B .

Corollary
Logarithmic Voronoi cells of all interior points in a linear models have the
same combinatorial type.
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Proposition
Every (n− d − 1)-dimensional polytopes with at most n facets appears as a
log-Voronoi cell of a d-dimensional linear model inside ∆n−1.
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Examples

B = [1,−5, 3, 1]T

c = (1/4, 1/4, 1/4, 1/4)

B = [−2,−1, 1, 2]T

c = (1/4, 1/4, 1/4, 1/4)
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On the boundary

LetM be a 1-dimensional linear model inside the simplex ∆n−1. Then
M = {c − Bx : x ∈ Θ}, where

B = [b1 . . . bm︸ ︷︷ ︸
>0

bm+1 . . . bn︸ ︷︷ ︸
<0

]T and c = (ci ).

Then Θ is the interval [x`, xr ] = [c`/b`, cr/br ] where b` < 0 and br > 0.
The log-Voronoi cell at xr is the polytope at the boundary of ∆n−1 with
the vertices

{ej : bj < 0} ∪

{
(ci − bi (cr/br ))bj

bjci − bicj
ei −

(cj − bj(cr/br ))bi
bjci − bicj

ej︸ ︷︷ ︸
vij

:
i 6=r ,
bi>0,
bj<0

}
.

The vertex vij degenerates into the vertex ej iff Mri = 0, where M = [B c].
The log-Voronoi cell at x` is described similarly.
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Non-polytopal example

M is a 3-dimensional model inside the 5-dimensional simplex given by:

f0 = x0 + x1 + x2 + x3 + x4 + x5 − 1

f1 = 20x0x2x4 − 10x0x
2
3 − 8x2

1x4 + 4x1x2x3 − x3
2

f2 = 100x0x2x5 − 20x0x3x4 − 40x2
1x5 + 4x1x2x4 + 2x1x

2
3 − x2

2x3

f3 = 100x0x3x5 − 40x0x
2
4 − 20x1x2x5 + 4x1x3x4 + 2x2

2x4 − x2x
2
3

f4 = 20x1x3x5 − 8x1x
2
4 − 10x2

2x5 + 4x2x3x4 − x3
3

Pick point p =
(

518
9375 ,

124
625 ,

192
625 ,

168
625 ,

86
625 ,

307
9375

)
∈M.

225 4× 4 minors of augmented Jacobian define the log-normal space.
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Non-polytopal example

Log-normal space of p is 3-dimensional, and the log-normal polytope
of p is a hexagon.
Using the numerical Julia package HomotopyContinuation.jl, we may
compute the logarithmic Voronoi cell of p:

(joint work with Alex Heaton and Sascha Timme)
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Continuous statistical models

Let X be an m-dimensional random vector, which has the density function

pµ,Σ(x) =
1

(2π)m/2(det Σ)1/2 exp

{
−1
2

(x − µ)TΣ−1(x − µ)

}
, x ∈ Rm

with respect to the parameters µ ∈ Rm and Σ ∈ PDm.

Such X is distributed according to the multivariate normal distribution, also
called the Gaussian distribution N (µ,Σ).

For Θ ⊆ Rm × PDm, the statistical model

PΘ = {N (µ,Σ) : θ = (µ,Σ) ∈ Θ}

is called a Gaussian model.
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Gaussian models

For a sampled data consisting of n vectors X (1), · · · ,X (n) ∈ Rm, we define
the sample mean and sample covariance as

X̄ =
1
n

n∑
i=1

X (i) and S =
1
n

n∑
i=1

(X (i) − X̄ )(X (i) − X̄ )T ,

respectively. The log-likelihood function is defined as

`n(µ,Σ) = −n

2
log det Σ− 1

2
tr
(
SΣ−1)− n

2
(X̄ − µ)TΣ−1(X̄ − µ).

The problem of maximizing `n(Σ) over Θ is maximum likelihood
estimation.

The logarithmic Voronoi cell of θ = (µ,Σ) ∈ Θ, is the set of all
multivariate distributions (X̄ ,S) for which `n is maximized at θ.
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Gaussian models

Proposition
Consider the Gaussian model with parameter space Θ = Θ1 × {Idm} for
some Θ1 ⊆ Rm. For any point in this model, its logarithmic Voronoi cell is
equal to its Euclidean Voronoi cell.

In practice, we consider models given by parameter spaces of the form
Θ = Rm ×Θ2 where Θ2 ⊆ PDm. The log-likelihood function is then

`n(Σ,S) = −n

2
log det Σ− n

2
tr(SΣ−1).

For Σ ∈ Θ2, the log-normal matrix space NΣΘ2 at Σ is the set of
S ∈ Symm(R) such that Σ appears as a critical point of `n(Σ,S). The
intersection PDm ∩ NΣΘ2 is the log-normal spectrahedron of Σ.

If Σ is a covariance matrix, its inverse Σ−1 is a concentration matrix.
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Concentration models

Let G = (V ,E ) be a simple undirected graph with |V (G )| = m. A
concentration model of G is the model Θ = Rm ×Θ2 where

Θ2 = {Σ ∈ PDm : (Σ)−1
ij = 0 if ij /∈ E (G ) and i 6= j}.

Proposition (A., Hoşten)
Let Θ2 be a concentration model of some graph G . For a point Σ ∈ Θ2,
its logaritmic Voronoi cell is equal to its log-normal spectrahedron.

In fact, we can describe log VorΘ(Σ) as:

log VorΘ(Σ) = {S ∈ PDm : Σij = Sij for all ij ∈ E (G ) and i = j}.
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Example

The concentration model of
1 2 3 4

is defined by

Θ = {Σ = (σij) ∈ PD4 : (Σ−1)13 = (Σ−1)14 = (Σ−1)24 = 0}.

Let Σ =


6 1 1

7
1
28

1 7 1 1
4

1
7 1 8 2
1
28

1
4 2 9

 .

Then log VorΘ(Σ) =

(x , y , z) :


6 1 x y
1 7 1 z
x 1 8 2
y z 2 9

 � 0

 .
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Bivariate correlation models

A bivariate correlation model is a model given by the parameter space

Θ2 =

{
Σx :=

[
1 x
x 1

]
: x ∈ (−1, 1)

}
.

Given S , the derivative of `(Σ,S) is 2
(1−x2)2

· f (x) where

f (x) = x3 − bx2 − x(1− 2a)− b

where a = (S11 + S22)/2 and b = S12.

The polynomial f has three critical points in the model iff ∆f (b, a) > 0
and a < 1/2.
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Bivariate correlation models

Given some Σc ∈ Θ2, what is its logarithmic Voronoi cell?

c must be a root of f (x).

Setting f (c) = 0, get a = bc2−c3+b+c
2 c .

Only S ∈ PDm satisfying this have Σ as a critical point of `n(Σ,S).
If either ∆f (b, a) ≤ 0 or a ≥ 1/2, then S ∈ log VorΘ2(Σ).
If ∆f (b, a) > 0 and a < 1/2, let c1 and c2 be the other roots of f (x).
In this case, S ∈ log VorΘ(Σ) iff `n(Σc ,S) ≥ `n(Σci ,S) for i = 1, 2.

Proposition (A., Hoşten)
Logarithmic Voronoi cells of bivariate correlation models are, in general,
not equal to their log-normal spectrahedra.
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Equicorrelation models
An equicorrelation model, denoted by Em, is given by the parameter space

Θ2 = {Σx ∈ Sym(Rm) : Σii = 1,Σij = x for i 6= j , i , j ∈ [m], x ∈ R}∩PDm .

How do we find the logarithmic Voronoi cell of Σc?
For every S , consider the symmetrized sample covariance matrix

S̄ =
1
m!

∑
P∈Sm

PSPT .

Note S̄ii = a and S̄ij = b whenever i 6= j , and 〈S ,Σ−1
x 〉 = 〈S̄ ,Σ−1

x 〉.
The critical points for a general S̄ with S̄ii = a and S̄ij = b fot i 6= j is
given by the points Σr where r is a root of the cubic

fm(x) = (m− 1)x3 + ((m− 2)(a− 1)− (m− 1)b)x2 + (2a− 1)x − b.

Set fm(c) = 0 to get the relationship between a and b that any
S̄ ∈ log VorEm(Σc) must satisfy.
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Equicorrelation models
An equicorrelation model, denoted by Em, is given by the parameter space

Θ2 = {Σx ∈ Sym(Rm) : Σii = 1,Σij = x for i 6= j , i , j ∈ [m], x ∈ R}∩PDm .

How do we find the logarithmic Voronoi cell of Σc?
If ∆f ,m(b, a) < 0, then S̄ ∈ log VorΘ(Σc).
If ∆f ,m(b, a) ≥ 0, we might have to evaluate `(•, S̄), at the other two
roots of fm, and compare it to `(Σc , S̄).
These inequalities are expressions in b only.

Proposition
Logarithmic Voronoi cells of equicorrelation models are, in general, not
equal to their log-normal spectrahedra.

In statistical practice, the matrices S̄ with three critical points in the model
are rare, even for small sample sizes [Amendola, Zwernik]. So we may
approximate log-Voronoi cells by log-normal spectrahedra.
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Thanks!
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